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Introduction

Gene regulatory networks (GRNs) consist of genes,
regulatory elements (REs), and transcription factor (TF)
proteins
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Understanding GRNs is important for investigating
disease origins and treatment
e Most disease-related mutations occur in
non-coding regions (eg. REs such as enhancers)
and cause target genes to be expressed in an
Incorrect amount
e Can use drugs/gene-editing techniques to correct
enhancer behavior

Problem: Many interactions between REs and genes still
remain unknown
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Goal: Discover interactions using deep-learning
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Methods

Approach: Improve prediction accuracy of RE-Gene interactions by employing Transformer in
existing GraphReg method (Alireza, et. al)
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Transformer Architecture

Self-Attention Matrix (example)
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Unlike CNNs which learn relationships
between a genomic region and its direct
neighbors, Transformers learn relationships

Multi-Head Attention

between a region and many other regions
upstream and downstream by computing
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Results
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e For training, Transformer performs better compared
to GraphReg, while testing losses are comparable

® Interestingly, Transformer’s training performance
decreases as # of attention layers/heads increases

Next Steps

. Add positional encoding to the Transformer

Use scores in self-attention matrix to link REs with

genes and compare results to GraphReg

(eg. ATAC-Seq data)

. Augment input data characterizing a genomic region



