Building the Gene Regulatory Network using Deep Learning Ashwini Suriyaprakash

Introduction

Gene regulatory networks (GRNs) consist of genes, regulatory elements (REs), and transcription factor (TF) proteins

Understanding GRNs is important for investigating disease origins and treatment

- Most disease-related mutations occur in non-coding regions (eg. REs such as enhancers) and cause target genes to be expressed in an incorrect amount
- Can use drugs/gene-editing techniques to correct enhancer behavior

Problem: Many interactions between REs and genes still remain unknown

Goal: Discover interactions using deep-learning

Advised by Lei Xiong, Computational Biology Group (Prof. Manolis Kellis) Eric and Wendy Schmidt Center Funded Research and Innovation Scholar

encoder:

Methods

Transformer Architecture

Self-Attention Matrix (example)

Unlike CNNs which learn relationships between a genomic region and its direct neighbors, Transformers learn relationships between a region and many other regions upstream and downstream by computing scores in the self-attention matrix below.

	5kb region1	
5kb region1	0.71	
5kb region2	0.1	
5kb region3	0.2	
•		

SuperUROP

Advanced Undergraduate Research **Opportunities Program**

- For training, Transformer performs better compared to GraphReg, while testing losses are comparable
- Interestingly, Transformer's training performance decreases as # of attention layers/heads increases

Next Steps

- 1. Add positional encoding to the Transformer
- 2. Use scores in self-attention matrix to link REs with genes and compare results to GraphReg
- 3. Augment input data characterizing a genomic region (eg. ATAC-Seq data)

Dec 2023