
Building the Gene Regulatory Network Using Deep Learning

Ashwini Suriyaprakash
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

ashwinis@mit.edu

Abstract

Understanding the interactions between regulatory ele-
ments and target genes within gene regulatory networks has
wide applications in human health, especially in disease
diagnosis and proactive clinical treatment. In this work,
we propose TRNReg, a transformer-based deep learning
approach that links regulatory elements with target genes.
Through a self-attention mechanism, TRNReg identifies re-
lationships between genomic regions, determines the rela-
tive impact of one region on another, and ultimately learns
a robust, context-based representation of each region. TRN-
Reg exceeded the baseline model in terms of accuracy,
achieving 21% higher Pearson correlation coefficient dur-
ing training and 1.5% higher correlation during testing.
Furthermore, the biological interactions that can be discov-
ered by TRNReg serve as a stepping stone for advancing the
current knowledge of gene regulation.

1. Introduction
Gene regulatory networks (GRNs) are complex biolog-

ical networks that govern the level to which a target gene
is expressed as protein. Abstractly, a GRN can be visual-
ized as a graph, in which nodes are either (1) target genes or
(2) regulatory elements, DNA regions which upregulate or
downregulate the expression of a target gene. In this graph,
every edge between a regulatory element E and target gene
G represents their interaction and can be characterized in
one of two ways: either ‘E upregulates G’ or ‘E down-
regulates G’. Comprehensively identifying the interactions
within GRNs is critical to understanding disease since most
disease-related mutations occur in regulatory elements and
other non-coding DNA regions, and cause target genes to
be expressed in an incorrect amount. In these situations,
deeper insight into GRNs can allow clinicians to efficiently
identify the mutated regulatory element and correct its be-
havior through treatments, such as drugs or gene-editing.

To accelerate the discovery of interactions within GRNs,

recent machine-learning based approaches, including Cel-
lOracle, FigR, and GraphReg, have been developed and
evaluated. These computational methods have been effec-
tive compared to traditional laboratory approaches since
they explore the vast space of potential interactions more
efficiently and narrow down this space into a small subset
that can subsequently be tested in the laboratory. These
methods leverage the availability of large public genomic
datasets that characterize both DNA structure and gene ex-
pression of sequenced cells. However, these approaches
have drawbacks. While CellOracle utilizes DNA structure
and gene expression data independently instead of analyz-
ing their correlation [4], FigR discovers new insights, only
within human peripheral blood mononuclear cells, a spe-
cific type of immune cell [6]. GraphReg overcomes the
limitations of CellOracle and FigR by not only consider-
ing DNA structure and gene expression in tandem but by
also generalizing to different cell types. GraphReg links
regulatory elements with target genes through a graph neu-
ral network-based method [1]. However, the quality of its
predictions can be further improved by modifying this ar-
chitecture.

In this work, we develop and present TRNReg, a
transformer-based method that links regulatory elements
with target genes. Improving upon GraphReg, TRNReg en-
hances prediction accuracy by replacing GraphReg’s con-
volutional neural network (CNN) with a transformer, an in-
creasingly popular deep learning architecture. The primary
advantage of a transformer is that unlike CNNs which learn
relationships between a genomic region and its direct neigh-
bors, transformers learn relationships between a region and
many other regions upstream and downstream. This advan-
tage is important because the model learns a more robust
representation of a genomic region since the biological be-
havior of a particular region can be influenced by other re-
gions that are not proximal to it.

Similar to GraphReg, TRNReg processes epigenomic
data, quantitatively describing DNA structure and confor-
mation for a particular genomic region as input, in order

1



to predict that region’s gene expression as output. The
input data is forwarded to a transformer encoder, consist-
ing of multiple Encoder layers, each with self-attention,
layer normalization, and feed-forward network. The en-
coder learns context-dependent representations of genomic
regions and passes these representations to subsequent steps
in the pipeline, ultimately yielding an output describing the
region’s gene expression. This model was trained on ge-
nomic regions across eighteen chromosomes, validated on
two chromosomes, and tested on two chromosomes in a hu-
man cell line. The performance of the model was evalu-
ated by comparing Pearson correlation coefficients between
the predicted output and ground-truth output. Because the
original training data (approximately 1000 regions across
18 chromosomes) was not sufficient to improve training ac-
curacy, several approaches were explored to artificially aug-
ment the size of the training set and are described in detail
in the Methods section.

Compared to GraphReg, TRNReg achieved superior ac-
curacy overall during both training and testing (20.98%
higher Pearson correlation during training and 1.47% higher
Pearson correlation during testing). Overall, TRNReg ad-
vances the current understanding of gene regulatory net-
works with the ultimate goal of improving disease diagnosis
and treatment.

2. Methods
In the following sections, we delve into the TRNReg

approach by providing an overview of the deep learning
pipeline, describing the architecture details of the trans-
former encoder, and lastly covering model training and
dataset augmentation.

2.1. Deep Learning Pipeline Overview

TRNReg improves upon an existing deep learning ap-
proach called GraphReg, which discovers interactions be-
tween genomic regulatory elements and target genes by
leveraging graph neural networks. At a higher level,
GraphReg’s architecture (Fig.1) takes in three types of DNA
epigenomic data as input (DNase-seq as a proxy for chro-
matin accessibility, H3K4me3 ChIP-seq for promoter ac-
tivity, and H3K27ac ChIP-seq for enhancer activity). This
data is first passed through a CNN, which learns a lower-
dimensional representation of every input genomic region.
Subsequently, these representations are then fed to a graph
attention neural network, which leverages 3D interaction
graphs to learn a context-based lower-dimensional repre-
sentation of each genomic region. Finally, this represen-
tation is passed through a few convolutional layers to ulti-
mately predict the gene expression (CAGE-seq) of that re-
gion.

Building off of GraphReg, TRNReg (Fig. 2) seeks to im-
prove prediction accuracy by replacing the first CNN block

Figure 1. Overview of the Epi-GraphReg Model. Input DNA
epigenomic data is processed through several neural network mod-
ules to predict target gene expression.

of GraphReg with a transformer encoder. Unlike CNNs
which learn relationships between a genomic region and its
direct neighbors, Transformers learn relationships between
a region and many other regions upstream and downstream
via self-attention, namely by computing attention scores be-
tween a region and every other region.

Figure 2. Overview of the TRNReg Model. In the TRNReg ar-
chitecture, the first CNN module of GraphReg is replaced with a
Transformer.

2.2. Transformer Architecture

The transformer in TRNReg mimics the behavior of the
original transformer encoder described in Google’s paper
and was implemented using Python’s Keras library [3]. The
input to the transformer is a 6-megabase (Mb) genomic re-
gion split into smaller 5-kilobase (kb) regions, which are
passed as input tokens to the encoder consisting of a stack
of encoder layers. Each encoder layer consists of a multi-
head attention layer, residual connection, layer normaliza-
tion, fully-connected feed forward network, residual con-
nection, and layer normalization as shown in Figure 3 be-
low.

The number of encoder layers and attention heads per
layer can be varied based on the user’s preferences. The
ultimate output of the encoder is a sequence of new tokens
that are enhanced context-dependent representations of 5-
kb regions. These representations are computed by analyz-
ing relationships between a given token and other tokens in
the sequence.

For better performance, a basic positional encoding with
sines and cosines was applied to the input tokens prior to
the encoder so that every token contains information about
its position in the sequence.

2



Figure 3. TRNReg Transformer Architecture. A sequence of input
tokens is fed to the transformer encoder consisting of N encoder
layers, ultimately yielding a sequence of tokens as output.

2.3. Model Training

TRNReg was trained, validated, and tested on epige-
nomic data belonging to a human cell line (K562) in the
hg19 reference genome build. The model was validated on
chromosomes 3 and 13, tested on chromosomes 4 and 14,
and trained on all other chromosomes except the sex chro-
mosomes X and Y. Every 6-Mb input to the transformer
encoder was generated by starting at the beginning of the
chromosome and shifting by 2 Mb to attain the next 6-Mb
region. The total number of 6-Mb regions in the training
set was approximately 1000, which is low especially for a
transformer. This data deficiency will be addressed in the
next section. Additionally, the model was trained for 30
epochs with the Adam optimizer, and the learning rate was
varied with values 0.0002, 0.0001, 0.00001, and 0.000001.

2.4. Boosting Training Set Size

As mentioned in the previous section, the current
training set size is inadequate for training a transformer,
which requires large amounts of data (on the order of tens
of thousands) to learn better local representations. Two
approaches were explored to address this problem, namely
increasing overlap between consecutive training data points
and decreasing the size of each input region. Each of these
approaches is described in more detail below.

1. Increasing overlap: To augment training size, we
increased the overlap between consecutive training data
points. This technique was drawn from a data augmentation
approach used to boost the size of a dataset containing
audio signals. In this work, the authors shifted every audio
by a certain time interval to generate additional training
samples [7]. Applying a similar approach to this problem,
we attained the next training region input by shifting the

current region by 200,000 bases instead of 2Mb (10x
smaller number of bases), corresponding to a shift factor
of 0.1. This resulted in a 10x larger training set. Multiple
shift factors, including 0.1, 0.17, and 0.23, were tested for
comparison, deliberately chosen to avoid redundancy in the
training data across shift factors.

2. Decreasing input region size: As mentioned in the
previous sections, every input fed to the transformer is a
6-Mb genomic region. With this size, the number of such
regions within every chromosome ranged from a minimum
of 18 regions (Chromosome 22) to a maximum of 121 re-
gions (Chromosome 2). Since the training set comprised
18 chromosomes, the total number of training regions was
approximately 1000. This was far too small for training.
To address this issue, every chromosome was diced into re-
gions that were 10x smaller (600000-base regions, rather
than 6-Mb regions), resulting in a 10x larger training set.

3. Results
We demonstrate that TRNReg surpasses GraphReg in

terms of prediction accuracy. As prior research noted, the
transformer encoder was expected to perform better than a
CNN because it learns relationships between a genomic re-
gion and many other genomic regions that are both proximal
and distant [5]. This allows transformers to discover more
robust representations of a given genomic region. In the
following sections, we discuss the data involved in training
TRNReg, describe the tested model hyperparameters, eval-
uate the performance of different data boosting approaches,
and visualize the gene expression output.

3.1. Dataset for Training TRNReg

To compare the performance of TRNReg with that of
GraphReg, we controlled for the input dataset used to train
both models. Like GraphReg, TRNReg was trained on
1,090 6-Mb regions spanning 18 chromosomes, validated
on 2 chromosomes, and tested on 2 chromosomes.

TRNReg processes three types of DNA epigenomic data
as input (DNase-seq as a proxy for chromatin accessibility,
H3K4me3 ChIP-seq for promoter activity, and H3K27ac
ChIP-seq for enhancer activity). These publicly avail-
able datasets were downloaded from The Encyclopedia of
DNA Elements (ENCODE) in bigwig format [1]. Every
input to the transformer represented a 6-Mb region, split
into a sequence of tokens, and the transformer learned a
context-dependent representation of these tokens. This ro-
bust representation was then passed to subsequent steps in
the pipeline, ultimately yielding a prediction of the CAGE
gene expression output. To evaluate the model’s perfor-
mance, this prediction was quantitatively compared with the
ground-truth gene expression using the Pearson correlation
coefficient, which was averaged across all data inputs. This

3



average correlation was computed for both GraphReg (the
baseline) and TRNReg to determine whether TRNReg’s ar-
chitecture yielded more accurate predictions.

3.2. TRNReg Model Hyperparameters

To achieve optimal performance, several hyperparame-
ters were tested, including number of attention heads, num-
ber of attention layers, number of epochs, learning rate, and
presence of an absolute positional encoding described in Ta-
ble 1. The positional encoding marks every input token with
its position in the sequence using sines and cosines, such
that proximal tokens have similar positional encodings [2].

Hyperparameter Tested Values

Number of attention heads 4, 8
Number of attention layers 1, 2, 4, 8, 16
Number of epochs 30
Learning rate 2× 10−4, 10−4, 10−5, 10−6

Positional encoding Present, Absent

Table 1. Tested Model Hyperparameters. The left column shows
the hyperparameter, and the right column shows the various values
of the hyperparameter tested.

Reducing the learning rate significantly to 10−6 yielded
poor training accuracy at epoch 30 since convergence was
slower. Furthermore, while TRNReg with positional en-
coding achieved similar training performance compared to
TRNReg without positional encoding, it struggled to gener-
alize to unseen data, performing worse during testing. Thus,
for future sections of this paper, the optimal combination
of hyperparameters used was number of attention heads =
4, number of attention layers = 1, number of epochs = 30,
learning rate = 10−5, and positional encoding = Absent.

3.3. Training Set Boosting Evaluation

As mentioned in the Methods section, transformers re-
quire on the order of tens of thousands of data points to be
trained effectively. For this purpose, two approaches were
used to augment the training set size:

The first approach was increasing overlap between suc-
cessive training set inputs. Instead of shifting the current
genomic region by 2Mb to get the next training datapoint
as GraphReg does, we performed a 10x smaller shift of
200,000 bases and consequently augmented the training set
size by 10x. This corresponded to a shift factor of 0.1.
We evaluated and compared multiple shift factors, includ-
ing 0.1, 0.17, and 0.23.

The second approach was decreasing the size of the in-
put region itself. While every data input to GraphReg rep-
resented a 6-Mb region, we instead attempted to feed TRN-
Reg regions that were 10x smaller (600000-base regions).
This augmented the training set size by 10x.

Both of these approaches were evaluated. Most notably,
increasing overlap between successive training inputs (par-
ticularly, with shift factor = 0.17) yielded significant accu-
racy gains over GraphReg during both training and test-
ing. Accuracy was measured in terms of Pearson correla-
tion where higher correlation means higher accuracy. Fig-
ure 4 below shows the training Pearson correlation over 30
epochs for GraphReg and different variations of TRNReg,
while Figure 5 shows the testing correlation. Note that all
TRNReg variations use the following combination of hy-
perparameters: number of attention heads = 4, number of
attention layers = 1, number of epochs = 30, learning rate =
10−5, and positional encoding = Absent.

As shown in Figure 4, reducing the shift factor (in-
creasing the overlap between successive training inputs) re-
sulted in higher training accuracy/correlation at epoch 30,
compared to TRNReg trained on the original non-boosted
dataset (blue curve) and baseline GraphReg (dotted black
curve). At epoch 30, the variation of TRNReg with shift
factor 0.17 (green curve) achieved a training correlation of
0.684, which was 20.98% higher than GraphReg’s train-
ing correlation of 0.565. However, decreasing input region
size by 10x (purple curve) performed significantly worse
compared to GraphReg and other TRNReg variations as it
achieved the lowest correlation.

Figure 4. Correlation (Pearson correlation coefficient) over 30
epochs for GraphReg and different variations of TRNReg during
training. The x-axis is the epoch number, and the y-axis is the
correlation. The higher the correlation at epoch 30, the better. Re-
ducing the shift factor resulted in higher correlation at epoch 30.

As shown in Figure 5, some TRNReg models achieved
higher accuracy compared to GraphReg during testing. At
epoch 30, the best-performing variation of TRNReg with

4



shift factor 0.17 (green curve) achieved a test correlation of
0.468, which was 1.47% higher than GraphReg’s test corre-
lation of 0.461.

For ease of interpretation, the final training and testing
correlations for all models at epoch 30 are also presented
non-graphically in Table 2.

Figure 5. Correlation (Pearson correlation coefficient) over 30
epochs for GraphReg and different variations of TRNReg during
testing. The x-axis is the epoch number, and the y-axis is the cor-
relation. TRNReg with shift factor 0.17 (green curve) achieved the
best correlation at epoch 30.

Model Train Corr. Test Corr.

GraphReg 0.565 0.461
TRNReg (original) 0.557 0.440
TRNReg (shift factor = 0.1) 0.753 0.456
TRNReg (shift factor = 0.17) 0.684 0.468
TRNReg (shift factor = 0.23) 0.645 0.463
TRNReg (10x small) 0.275 0.222

Table 2. Model Performance. For every model in the leftmost
column, the corresponding final training and testing correlations
at epoch 30 are displayed. TRNReg with shift factors of 0.17
(in green) and 0.23 (in red) surpassed GraphReg’s correlation
(bolded) during both training and testing, and 0.17 achieved higher
correlation values of the two.

3.4. CAGE Expression Visualizations

For ease of comparison, the predicted CAGE gene ex-
pression output and ground-truth output were plotted to-
gether for all 5-kb regions in the training dataset in Figure

6 below. Every tick on the x-axis represents a single 5-
kb region, and the corresponding y-axis value is the CAGE
output for that 5-kb region. The solid red line denotes the
CAGE value predicted by TRNReg, and the dotted black
line denotes the ground-truth CAGE value. This visual-
ization demonstrates that TRNReg’s predictions reasonably
match the ground-truth data.

Figure 6. Predicted vs. Ground-truth CAGE output. The x-axis
represents 5-kb regions, and the y-axis is the CAGE output for
the corresponding region. Figure provides visual confirmation
that CAGE output predicted by TRNReg reasonably matches the
ground-truth value but with great differences at the edges.

4. Conclusion

Overall, TRNReg achieved superior training and testing
accuracy compared to GraphReg. This result is promis-
ing because it strongly suggests that TRNReg can discover
interactions between regulatory elements and target genes
more accurately, compared to the state-of-the-art baseline
GraphReg. The immediate next step is to use the pairwise
attention weights learned by TRNReg to link regulatory el-
ements with target genes and confirm the validity of these
interactions with prior literature. In particular, we expect
TRNReg to discover biologically-significant interactions,
which GraphReg does not, and thus surpass GraphReg in
advancing the current understanding of gene regulation.

In terms of other avenues for further exploration, it
would be insightful to evaluate various publicly available
transformer models beyond the vanilla transformer encoder.
In addition, leveraging more datasets, such as those from
different species, could help boost the training set size and
may yield promising results, though doing this experiment
relies on the assumption that GRNs are conserved across
different species. Nevertheless, we demonstrate TRNReg’s
advantages over the state-of-the-art baseline and its impli-
cations in disease diagnostics and treatment.

5



5. Datasets
Epigenomic and gene expression data (CAGE-seq) for

cell line K562 was downloaded from The Encyclopedia of
DNA Elements (ENCODE). The 3D Hi-C chromatin inter-
action data for cell line K562 was downloaded from the
NCBI Gene Expression Omnibus. Links to the data are
listed below.

DNase-seq: encodeproject.org/files/ENCFF352SET
H3K4me3: encodeproject.org/files/ENCFF689TMV/
H3K27ac: encodeproject.org/files/ENCFF010PHG/
CAGE: encodeproject.org/files/ENCFF233CVF/
Hi-C: ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

References
[1] Alireza Karbalayghareh et al. Chromatin interaction aware

gene regulatory modeling with graph attention networks.
2022. 1, 3

[2] Amirhossein Kazemnejad et al. The impact of positional en-
coding on length generalization in transformers. 2023. 4

[3] Ashish Vaswani et al. Attention is all you need. 2017. 2
[4] Kenji Kamimoto et al. Dissecting cell identity via network

inference and in silico gene perturbation. 2023. 1
[5] Tianyang Lin et al. A survey of transformers. 2022. 3
[6] Vinay K. Kartha et al. Functional inference of gene regulation

using single-cell multi-omics. 2022. 1
[7] Lucas Ferreira-Paiva. A survey of data augmentation for audio

classification. 2022. 3

6


	. Introduction
	. Methods
	. Deep Learning Pipeline Overview
	. Transformer Architecture
	. Model Training
	. Boosting Training Set Size

	. Results
	. Dataset for Training TRNReg
	. TRNReg Model Hyperparameters
	. Training Set Boosting Evaluation
	. CAGE Expression Visualizations

	. Conclusion
	. Datasets

